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AbshcL We study scalar vibrational pmpsrlies of random networks where WO types 
of harmonic springs, f~ and JB = hfA (h < l), are present with probability p and 
1 - p, respectively. We develop a scaling theory for the density of slates N ( w )  near 
the critical concentrationp,, and test it by numerical simulations on the square lattice. 
For p > pc and h suficiently small, we recwer the rtandard fraaon-phonon c m w e r  
at a eharaeteristic frequency, determined by the correlation length E ,  we > WB, where 
q - f i i ’  is the maximum frequency of the 8 sublallice. For finite h a n d p  sufficiently 
close to pc. we oblain a new type of fracton-phonon c m e r  determined by WO 
characteristic frequencies: wh (which depends on h )  and WE,  with wh < q. In this 
case. a hump mediates the cmdsover from fracton-like modes (occurring for w > WE), 
lo Debye phonons (occurring for w < wh) when wh P we. 

1. Introduction 

Vibrational properties of random two-component systems have been studied inten- 
sively in the past [l]. ’&pica1 examples are random alloys of two atomic species of 
arbitrary mass ratio and composition. It is well known that the density of vibra- 
tional states of those alloys is quite rich, and has a complex structure at intermediate 
compositions due to the existence of localized and extended modes in the frequency 
spectrum [ 11. 

To some extent, two-component mixtures can be modelled by percolation networks 
in which all lattice sites are occupied by unit masses, and nearest-neighbor sites are 
connected by springs with force constants taking valuesfA = 1 with probabilityp, and 
fB = hfA with probability 1 - p  (h i 1). Above a critical concentrationp,, there exists 
an ‘infinite’ cluster of A bonds. The mean linear size c of the finite A clusters in 
the network represents a characteristic length scale in the system. On length scales r 
smaller than t, both the infinite cluster and the finite A clusters are self-similar and 
described by the fractal dimension d,. On length scales larger than <, the infinite 
cluster is compact and described by the Euclidean dimension d of the network. The 
correlation length E diverges as E - lp -pel-" i f p ,  is approached [Z]. 

So far, the vibrational properties of two-component iietworks near pc have been 
studied only for the limiting case h = 0. In this case, is the only characteristic 
length in the system, and determines a characteristic frequency wF for the vibrational 
modes. By exploiting the analogy between scalar vibrations and the corresponding 
random walk problem defined on the same percolation network, it has been shown 
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that we - - (j~ - p c ) y 4 / 2  131. Here d, characterizes the time evolution of the 
root-mean-square displacement (RMSD) R(r) - of random walks on the infinite 
A cluster at pc [4,5], d, > 2. For frequencies w > we corresponding to length scales 
smaller than <, vibrations are strongly localized in space with a frequencydependent 
localization length A. These modes are called ‘fractons’ and can occur either on a 
portion of the infinite cluster or on finite A clusters whose linear size L > X 161. For 
w < wt, the vibrational modes extend over macroscopic length scales and correspond 
to sound waves. 

The density of vibrational states N ( w )  reflects the two regimes described above. 
For fractons one finds, 

where d: = 2d/d,  is the spectral dimension [6], while for sound waves one has, as 
usual, 

This simple percolation model contains already the essential ingredients for de- 
scribing the vibrational properties of several random fractal structures. Prominent 
examples are silica aerogels, which are self similar over a wide range of length scales 
17, 81. However, owing to the restrictive assumptionfB = 0, this model does not apply 
to random AB alloys in general. In ternary glassy compounds such as Fe,Ni,B,-, 
[lo] essentially two types of bond strengths between the atoms seem to determine 
the vibrational properties of the system, and a similar picture may apply also to more 
complex systems such as (AgI),(Ag20.B20,)I-, glasses [ll]. 

The purpose of this paper is to release the restrictive condition h = 0 and to study 
random two-component mixtures near the percolation threshold for the more general 
case 0 < h 1. For simplicity, scalar force constants are assumed. Our approach is 
based on the analysis of the probability of return to the origin, and has the advantage 
that it can be easily applied to both the h = 0 and h > 0 cases. To illustrate of this 
approach, which is simpler than those known in the literature 16, 121, we start with 
the standard percolation problem, h = 0. 

2. Standard pereolation networks 

According to Alexander and Orbach 131 (see also [ 13]), the density of vibrational states 
N ( w )  is related to the probability of return to the origin Po@) in the corresponding 
random walk problem, 

N ( w )  exp(-w*t). 
U 

To obtain N ( w ) ,  we calculate first Po(+ In the random walk problem, a random 
walker (‘ant’) is allowed to move along A bonds only, and can start its walk at a site 
belonging to any A cluster in the network. In order to obtain Po(‘) one must average 
over all A clusters in the system. 
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First we consider random walks at pc, on the restricted ensemble of A clusters 
with the same (ked) number of sites s. The mean proba:bility of being at those sites 
where the ants started, P t ) ( f ) ,  is proportional to the inverse of the mean number of 
sites explored by the ants, i.e. $)(I) - [ R * ( I ) ] - ~ ~ ,  where R,(I) - t11L for I < &ldf, 
and RJt) - s1Idf for c > .&/dl [SI. Since the probability that an A cluster of s sites 
occurs in the network scales as ~ - ~ / ~ f  [2], we obtain P,,(I) by averaging over all cluster 
sues s, 

'Ib obtain Po('), we follow a procedure employed in [SI to calculate the root-mean- 
square displacement R(t) .  Due to the presence of finite A clusters in the network, 
P,(I) tends to a @-dependent) constant P,(w)  at large times, and we find 

where d: = 2d/d,, d: Z 1.39 in two dimensions. If we consider diffusion on the infinite 
cluster alone, Pu(w) = 0 and P,,(I) scales as Po(') - [R(C)]-~~ - trdr/&. In contrast, 
for diffusion on all A clusters in the network, R ( f )  - tild: with d: = 2dw/(2 + df - d )  
(see e.g. [5]), and P,,(t) - P,,(w) does not scale as [R(c)]-d'. 

is the only characteristic length scale in the 
network, and the time tE - CL the ant needs to explore the fractal labyrinths of size 
is the only relevant time scale. Now, (22) holds only for times I I(. On large 
time scales c > r E ,  corresponding to large length scales where the infinite percolation 
cluster is uniform, P,,(f) - P,(w) - r d I 2 ,  similar to the behaviour in Euclidean 
lattices. The behaviour of Pup) in both regimes can be bridged by the scaling ansatz 

wheref(x) =const forx e: 1, and f(x) - x - ( ~ - ~ : ) / ~  for x > 1. Using (2.3) in (2.1). it 
is easy to verify that the density of states N(w) obeys, for w > 0, the scaling form 

where 

is the characteristic frequency. For the scaling function one requires g ( x )  = const for 
x > 1 where fractons occur [6] and g(x) - xd-4  for x << 1 where Dcbye phonons 
occur. The scaling form (2.4) has been suggested in [12], where it was assumed that 
(2.4) is valid for all w. The constant term P,,(w) in (23) gives rise to a delta function 
&(U) in the density of states and, as a result, (24) obeys the normalization condition 

P"(I) - P"(W) - r-d:/2 (2.2) 

Above pc,  the correlation length 

P"(C) --P"(W) = t -d : /2  f ( I / I E )  

N ( w )  =wdj-' g(w/wc)  w > 0 (2.4) 

F -  - c - 1 1 2 -  E ~p -pclud-/2 (2.5) 

(2.3) 

Do 

<+ut ~ i m  J c ~ u ~ ( w )  = 1 - pU(m). (26) 

Numerical studies of N(w) have been performed for the infinite percolation cluster 
in two- and three-dimensional systems [14]. Here, we have extended these calculations 
to percolation networks as well, and have tested (2.4) for bond percolation on the 
square lattice. 'lb obtain N ( w )  we used the Williams-Maris technique [U]. Our 
numerical results shown in figure 1 support (2.4). The scaling function g(x) in (2.4) 
is smooth near the crossover region, in agreement with previous numerical work [14] 
for the infinite percolation cluster. 
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F i g "  1. N(w)/w<-' 8s a function of w/@ -pc)"d-lE 10 test the scaling behaviour of 
the density of states (24) a h  the percolation thresholdp, = 112, for bond-peccolation 
networks on the square lattice. Different symbols colrespond to diEcrent values of p:  
052 (0). 0.54 (A), 055 (x), 0.56 (+), and 058 (0). 

3. General hwo-eomponeat networks 

Next we consider general AB mhaures, h 2 0. It is useful to recall first the form of 
N ( w )  for the two limiting cases p = 0 and p = 1. These are illustrated in figure 2 for 
the square lattice. 

, , , , 111 
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Y 

Figure 2. Density of vibrational states N(w) against froqucncy w in monatomic quare 
lattices. For p = 0, a lattice of unit masser and spring constants f~ aim (broken 
cuwe), while for p = 1 a lalliu of unil masses and forcc amstants f~ > occw 
(continuous curve). Vibrational modes occur below a culoff frrqucncy q, = (S/B)~/* 
for p = 0, and below a frequency WA = (8f~)'D for p = 1. A singularity in N(w) is 
present a1 frequencies wiB' = (4f~)'l' and uiA) = ( 4 f ~ ) l l ~ ,  rrapectively. Both 5pcetra 
are normalized 10 unity. 

Forp = 1, aII lattice sites are connected by springs with force constansf,, while 
for p = 0 aU lattice sites are connected by springs with force constants fB (= hf,, 
h < 1). For p = 0, vibrational modes occur below the cutoff frequency (edge of the 

~ 
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spectrum) 

wB = (8fB)"z (3.1) 
while for p = 1 vibrational modes occur below wA = (8fA)'/z. Below the threshold 
frequencies, the density of states shows a singularity at up) = (4fB)1/z forp = 0, and 
at U$*) = (4fA)'I2 fo rp  = 1 [ lq .  For h < 1, the density of states of the ordered B 
lattice, NB(w). is located at frequencies well inside the Debye regime of the density 
of states of the ordered A lattice where NA(w) Y (2xfA)-'w. We expect that the 
frequencies w p  and wB of (3.1), which are characteristic of the ordered B lattice, 
will also show up in the random AB network. At low concentrations of A bonds 
(p < l), N ( w )  is well described by the shape of NB(w), as long as w < wW Because 
of disorder, the singularity in NB(w) is smoothed out and becomes a 'hump' in N ( w )  
around up). For frequencies above wB, N ( w )  exhibits a number of peaks representing 
localized lattice vibrations of small A clusters embedded in the B matrix [I]. 

The situation becomes more complex near and above pc.  where the infinite A 
cluster occurs. From figure 2 and section 2, it is intuitively clear that at pc  we can 
expect sound waves at very low frequencies, followed by a hump at wl;"), and fracton 
like excitations above wB, for h e 1. The set-in of sound waves, however, is not 
simply determined by wg, but by a second characteristic frequency w,, wB which 
depends on the ratio h (see below). Above pc,  the correlation length E is finite and 
consequently also w( (of 2.5) has to be taken into account. 

To obtain N ( w )  for p at pc  and above pc, we considm the related random walk 
problem wheref, andf, denote the transition rates along the A and B bonds. In the 
following we discuss two l i i t ing cases: (I) wc << wh <us, and (11) wh < wg < we. 

3.1. Frequency regime I: we < wh << wB 

First we consider the random walk problem at p,. In contrast to the case h = 0, a 
random walker (which in this case is often referred to its a 'termite') can perform 
jumps along both types of bonds. If the termite moves along the A bonds, it explores 
the fractal labyrinth of an A cluster, and attempts to leave the cluster, through B 
bonds, with a probability - h << 1. The transition rate fA determines the mean jump 
time tA -fi' along an A bond, which we take as the unit of time. 

Along the B bonds, the mean jump time I ,  is proportional to h-lt,, and the 
motion of the termite is slowed down considerably [17J Accordingly, for very short 
times I ,  4 I < t ,  (corresponding to length scales 1 < r e h-'/&, where the length 
of a bond has been chosen as unity) diffusion is determined solely by the behaviour 
of the termite on the fractal labyrinths of A clusters, and R(r) - 1'14 as for random 
walks on standard percolation networks (section 2). Thus, from (22) we expect 

P,(t) -P,(co) - f - d : / z  I ,  < t < tg.  (3.2) 
For times I > I,, the termite can move also along B bonds and explores both A and 

B clusters, which become thus coupled to each other. According to Hong et al (17, 
there exists a second characteristic time t,, -f;' hey&+ > t,, above which diffusion 
becomes normal and R ( t )  - (D,, with the diffusion constant D,, - f, hfi+, where + = (p +s)-', and p and s are the conductivity and the superconductivity exponents, 
respectively. For t > th, we then expect 

P,(t) - r d 1 2  t > rh (3.3) 
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where now Po(oo) = 0, since the termite can diffuse everywhere in the network. 
In previous publications on the termite problem [lq, it has been assumed that 

fh is the only characteristic time scale of the problem and a scaling theory for R(t) 
based upon this assumption has been performed. As we have seen, this ansatz is not 
justified since for shorter times t d: th, tB is the relevant time scale, and anomalous 
diffusion occurs only for t < f B ,  nof for f < fh as assumed in [ 171. 

In the equivalent vibrational problem, the anomalous behaviour of the random 
walk for times fA I <s: f B ,  corresponds to fracton-like vibrations of the A-bonds 
in the network for frequencies wB d: w < wA, as discussed qualitatively above. 
Accordingly, the density of states N ( w )  should scale as 

N ( w )  - w e - '  WB < W < @ A  (3.4) 
where fractons occur. 

The intermediate time regime fB < I < th, in which the termite can explore both A 
and B clusters, corresponds to vibrations associated with both A and B springs in the 
network, for frequencies wh < w < ws. The characteristic frequency corresponding to 
Ih? 

(3.5) 

N ( w )  - d-' W < W h .  (3.6) 

1/2hvd.O/? 
wh - f A  

determines the frequency scale below which Debye phonons should occur, and 

The exponent ud&/2 in (3.5) is greater than 1/2 and hence wh < w p  < wg. AG 
cordingly, we expect that in this intermediate frequency regime, non-Debye phonons 
can be excited which manifest themselves by the hump in N ( w ) .  Numerical cal- 
culations of N ( w )  for two-dimensional bond-percolation networks at criticality sup- 
port (3.4) and (3.6), as shown in figure 3. 

The scaling behaviour of N ( w )  is different from that in the case h = 0 (see (24)), 
because of the existence of two characteristic frequencies, wh of (3.5) and wB of (3.1). 
Outside the hump region, i.e. for w < wh or w > wB, the following scaling form holds 

N ( w )  E wd;-' G(w/wh) (3.7) 

where G(x) - const for w > wB,  and G(x) -xd-d: for x < 1. The results of numerical 
simulations are plotted in figure 4 (a). The data collapse supports our ansatz (3.7). 

If we consider all frequencies, including those in the hump region, we obtain the 
results shown in figure 4 (b). Clearly, there is data collapse (scaling) for w < wh and 
w > ws. Notice, however, that the data also collapse above wh for frequencies below 
the hump frequency, w < wiB). This data collapse can be identified with the one 
obtained for the termite problem for times f B  d: I e th at p = p c  (see figure 10 of 
Hong et a1 [ 171). 

Forp >pc ,  the above results hold if he > @-p , ) .  This condition means that the 
time th the termite needs to explore large length scalcs in the system, is much smaller 
than the time fc that would take the termite to move over length scales of order 
on the infinite A cluster alone. The condition I( > I, corresponds to frequencies 
wc < wh (see figure 5). In this limit, tc is irrelevant and tB and th represent the 
only characteristic times in the system. Equivalently, wB and wh represent the only 
characteristic frequencies. 
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w 

Y 

Flgorr 3. Density of vibrational states for bond-percolation networks at the critical 
concentration pc = 1/2. for several ratics of spring constants: (0) k = and (b) 
0.05. The positions of a, wiB), WB, U$*) and WA arc indicated by a m .  The straight 
liner display the s l o p  predicted ty the theory (equations (3.4) and (3.6)). 

3.2 Frequency regime 11: w, 

This regime corresponds to the case le < rg. Withiin the ‘short’ time regime r < lB, 
the walker can explore length scales of the order of the correlation length 6, thus 
escaping from the fractal labyrinth of the infinite A cluster before exiting the infinite 
cluster through B bonds. In this limit, the random walker behaves essentially as the 
ant in the labyrinth of section 2 [lv, and Po@) is expected to obey (23). Nothing 
special can occur for times r >, rg since the walker has already explored large length 
scales when it can transit through B bonds. 

In the corresponding vibrational problem, the standard crossover from fractons 
to Debye phonons occurs at the characteristic frequency wI B wg. Now, vibrations 
associated with the B sublattice occur at frequencies well inside the Debye-phonon 
regime of the A network. In contrast to the smooth behaviour of P,,(t) near rB, the 
existence of the second frequency wB in N ( w )  is manifested by the hump at U?’, 
which appears as a low-frequency peak (see also [U]). Thus, the density of states 

wB K we 
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Plgum 4. Test of the scaling behaviour of Ihe densiry of states (3.7X for bond-percolation 
n e w a r k  in WO dimensions a t  the percolalion thresholdpr, for several values of h. (U)  

Oebyc regime, excluding the region of the hump, foc < h < 0.1, on 400 x 4W 
latlica and averages over 10 system realizations each. (b) All frequencies, including the 
hump region, for: lo-' < h < 0.1, where the a m  indicate the values of w / w h s  on 
100 x 100 lattices and averages over SO syslem realizations each. 

Anomalous D i  f f u s  i o n  

D i  f f u s  i o n  
I I I 

I t 
t A  t0  t h  ltcI 

Hump 

r e g i o n  
Debye Phonons Frac tons 

I I I 
Ah, 

I 
0 l u g )  Wh WB 3 w A  

JB, 

FMrc 5. (U )  Schemalic representation of di6erent lime regimes for random walks on 
random AB network, with P?M types of bands mppresenling mean jump times fr\ and 
re > fr\, near the critical concentration of A with fg < y, a re. (b) The corresponding 
frequency regimes of the relaled vibrational problem. where generically, W. U t .  -112, 
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should behave as in (2.4) for frequencies w > wB, i.e. 

N(w)  Y wd-' g(w/w,) w > wB (3.8) 

and f ra t"  occur at w B we, with a 'smooth' crossover to Debye phonons for 
w W ~ .  We show in figure 6 illustrative examples of the density of states obtained 
for wB < W ~ .  Values of N(w)  for w > wB are indistinguishable from those obtained 
for the same p when h = 0, thus supporting our ansatz (3.8). 

-1 *.. I. 1.1 L I LLLL .... L 
4 4  

U< lo - '  1 U!*' U* -. ws 10- 

W 

- t  

10-2 U I I 1 1 1 l 1 1  I I l l d  

wg 10-2 lo - '  U( 1 w!"' w* 
f A * I .  

w 

L $10-1 

Figure 6. Same as in figure 3, for p > p s  and we 2b w, wilh h = IO-': (U) p=057 
and (b) p=0.60. The pmitions of q, we, w y )  and WA are indicated by mow. The 
smight liner display the s l o p  predicted hy the theorj (equations (24) and (3.8)) 

Because of normalization, the amplitude of the B hump around wp) grows as fB 
decreases. Whenf, = 0, the B sublattice contributes to N ( w )  a delta-like function at 
w = 0, and (3.8) holds for all frequencies w > 0, as discussed in section 2. 

4. Summary and concluding remarks 

We have studied scalar vibrational properties of random twocomponent networks, 
where two types of harmonic springs, fA and fB = hf, (h < 1) are present with 
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probablityp and I-p, respectively. We have developed a scaling theory for the density 
of states N ( w )  near the critical concentration pc,  and have tested it by numerical 
simulations on the square lattice. 

A salient feature. of the present model is the manifestation of a ‘hump’ in N(w) ,  
representing non-Debye phonons near the maximum vibrational frequency of the B 
sublattice, wB - f;”. Forp > pe  and h sufficiently small, the standard fracton-phonon 
crossover is recovered at a characteristic frequency wc > wB, which is determined by 
the correlation length c. For finite h and p sufiiaently close to pc. a new type 
of fracton-phonon crossover is obtained which is determined by two characteristic 
frequencies: wh (which depends on h) and wB, with wh a wg. The hump mediates 
the crossover from fracton-like modes (occurring for w B wB), to Debye phonons 
(occurring for w Q wh) when wh B wc. 

Similar qualitative behaviour of the density of states can be expected for simple 
cubic lattices where a hump in N ( w ) ,  originating from the maximum &the density 
of states of the ordered B lattice, is also present near the critical concentration 
pc  p? 0.2492 (see, e.g. [I]). 
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