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Abstract. We study scalar vibrational properties of random networks where two types
of harmonic springs, fo and fg = Afa (h <€ 1), are present with probability p and
1 — p, respectively. We develop a scaling theory for the density of states N(w) near
the critical concentration pe, and test it by numerical simulations on the square lattice.
For p > p. and h sufficiently small, we recover the standard fracton-phonon crossover
al a characteristic frequency, determined by the correlation length £, wg » wp, where

wp ~ Jv"Bl‘fz is the maximum frequency of the B sublattice. For finite /# and p sufficiently
close 1o p., we obtain a new type of fracton-phonon crossover determined by two
characteristic frequencies: wy (which depends on A) and wp, With w; < wp. In this
case, a hump mediates the crossover from fracton-like modes (occurring for w 3 wa),
to Debye phonons (occurring for w < wy) when wy 2> w;.

1. Introduction

Vibrational properties of random two-component systems have been studied inten-
sively in the past f1]. Typical examples are random alloys of two atomic species of
arbitrary mass ratio and composition. It is well known that the density of vibra-
tional states of those alloys is quite rich, and has a complex structure at intermediate
compositions due to the existence of localized and extended modes in the frequency
spectrum [1].

To some extent, two-component mixtures can be modelled by percolation networks
in which all lattice sites are occupied by unit masses, and nearest-neighbor sites are
connected by springs with force constants taking values f, = 1 with probability p, and
fa = hf, with probability 1 —p (h < 1). Above a critical concentration p,, there exists
an ‘infinite’ cluster of A bonds. The mean linear size ¢ of the finite A clusters in
the network represents a characteristic length scale in the system. On length scales r
smaller than £, both the infinite cluster and the finite A clusters are self-similar and
described by the fractal dimension d;. On length scales larger than &, the infinite
cluster is compact and described by the Euclidean dimension 4 of the netwoik. The
correlation length £ diverges as £ ~ |p —p_|™" if p, is approached [2].

So far, the vibrational properties of two-component networks near p, have been
studied only for the limiting case # = 0. In this case, ¢ is the only characteristic
length in the system, and determines a characteristic frequency w, for the vibrational
modes. By exploiting the analogy between scalar vibrations and the corresponding
random walk problem defined on the same percolation network, it has been shown
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that w, ~ £=%/2 ~ (p — p,)**/2 [3]. Here d,, characterizes the time evolution of the

root-mean-square displacement (RMsD) R(¢) ~ }/% of random walks on the infinite
A cluster at p_ [4,5], d,, > 2. For frequencies w > w, corresponding to length scales
smaller than £, vibrations are strongly localized in space with a frequency-dependent
localization length A. These modes are called ‘fractons’ and can occur either on a
portion of the infinite cluster or on finite A clusters whose linear size L 3 A [6]. For
w < wy, the vibrational modes extend over macroscopic length scales and correspond
to sound waves.

The density of vibrational states N(w) refiects the two regimes described above.
For fractons one finds,

N(w) ~ w1 WP w (LL)

where 4! = 24 /d,, is the spectral dimension [6], while for sound waves one has, as
usual,

Nw} ~ w1 w L wg. (1.2)

This simple percolation model contains already the essential ingredients for de-
scribing the vibrational properties of several random fractal structures. Prominent
examples are silica aerogels, which are self similar over a wide range of length scales
[7, 8). However, owing to the restrictive assumption fg = 0, this model does not apply
to random AB alloys in general. In ternary glassy compounds such as Fe NiB,_,,
[10] essentially two types of bond strengths between the atoms seem to determine
the vibrational properties of the system, and a similar picture may apply also to more
complex systems such as (Agl),(Ag,0 B,0,),_, glasses [11].

The purpose of this paper is to release the restrictive condition 2 = 0 and to study
random two-component mixtures near the percolation threshold for the more general
case 0 < h <« 1. For simplicity, scalar force constants are assumed. Our approach is
based on the analysis of the probability of return to the origin, and has the advantage
that it can be easily applied to both the A = 0 and k > 0 cases. To illustrate of this
approach, which is simpler than those known in the literature [6, 12], we start with
the standard percolation problem, s = 0.

2. Standard percolation networks

According to Alexander and Orbach [3] (see also {13]), the density of vibrational states
N(w) is related to the probability of return to the origin Py(f) in the corresponding
random walk problem,

Pyt) = f dw N(w) exp(—uw?t). (2.1)
0

To obtain N(w), we calculate first Py(¢). In the random walk problem, a random
walker (‘ant’) is allowed to move along A bonds only, and can start jts walk at a site
belonging to any A cluster in the network. In order to obtain Py(t) one must average
over all A clusters in the system.
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First we consider random walks at p_, on the restricted ensemble of A clusters
with the same (fixed) number of sites 5. The mean probability of being at those sites
where the ants started, P((,’)(t), is proportional to the inverse of the mean number of
sites explored by the ants, i.e. P§(¢) ~ [Ry(1)]~%, where R,(f) ~ (/% for t < s/,
and R () ~ s"% for ¢ > s™/% [5]. Since the probability that an A cluster of s sites
occurs in the network scales as s~4/4 [2], we obtain P,(t) by averaging over all cluster
sizes s,

o0
Pt ~ 3 s~ H PO P
s=1
To obtain Py(t), we follow a procedure employed in [5] to calculate the root-mean-
square displacement R(f). Due to the presence of finite A clusters in the network,
Py(t) tends to a (p-dependent) constant Py(oo) at large times, and we find
Py(t) — Pyloo) ~ 17412 22)
where d! = 2d/d,,, d! = 1.39 in two dimensions. If we consider diffusion on the infinite
cluster alone, Pu(oo) 0 and P,(¢) scales as Py(f) ~ [R(1)]~% ~ ~%/%, In contrast,
for diffusion on all A clusters in the network, R(t) ~ 1Y% with d', = 2d4,, /(2 +d; —d)
(see e.g. [5]), and Py(t) — Py(oc) does not scale as [R(2)] 4.

Above p, the correlation length £ is the only characteristic length scale in the
network, and the time 7, ~ ¢% the ant needs to explore the fractal labyrinths of size £
is the only relevant time scale. Now, (2.2) holds only for times ¢ < 7,. On large
time scales ¢ 33 ¢, corresponding to large length scales where the infinite percolation
cluster is uniform, Py(t) — Py{oo) ~ ¢~#42, similar to the behaviour in Euclidean
lattices. The behaviour of Py(t) in both regimes can be bridged by the scaling ansatz

Py(t) ~ Py(oo) = =412 f(t]t,) (2.3)

where f(x) =const for x < 1, and f{x) ~x~@-4)/2 for x 3» 1. Using (2.3) in (2.1), it
is easy to verify that the density of states N(w) obeys, for w > 0, the scaling form

Nw)=wh'glwfu;) w>0 (24
where

we =177~ |p—p |2 @5)
is the characteristic frequency. For the scalmg functlon one requires g(x) = const for
x > 1 where fractons occur [6] and g{(x)} ~ x4-% for x < 1 where Debye phonons
occur. The scaling form (2.4) has been suggested in {12], where it was assumed that
(2.4) is valid for all w. The constant term Py(co) in (2.3) gives rise to a delta function
§(w) in the density of states and, as a result, (2.4) obeys the normalization condition

lim, fdwN(w) = 1 - Py{c0). - (2.6)

Numerical studies of N () have been performed for the infinite percolation cluster
in two- and three-dimensional systems [14]. Here, we have extended these calculations
to percolation networks as well, and have tested (2.4) for bond percolation on the
square lattice. To obtain N(w) we used the Williams-Maris technique [15]. Our
numerical results shown in figure 1 support (2.4). The scaling function g(x) in (2.4)
is smooth near the crossover region, in agreement with previous numerical work [14]
for the infinite percolation cluster.



4800 S Russ et al

0.5 T T T TTTIIT] T T T T T T
- -
RN
2
2
= 0.2
0.1 Lo el L1y gl g gyl
10 10 10°
w g

Figure 1. N(w)/w% =1 a5 a function of w/(p — pc)*%/2 1o test the scaling behaviour of
the density of states (2.4) above the percolation threshold p. = 1/2, for bond-percolation
networks on the square laftice. Different symbols correspond to different values of p:
0.52 (O), 0.54 (A), 0.55 (%), 0.56 (+), and 0.58 (O).

3. General two-component networks

Next we consider general AB mixtures, & > 0. It is useful to recall first the form of
N(w) for the two limiting cases p = 0 and p = 1. These are illustrated in figure 2 for
the square lattice.

Figore 2. Density of vibrational states N(w) against frequency w in monatomic square
lattices. For p == 0, a lattice of unit masses and spring constants fg exists (broken
curve), while for p = 1 a lattice of unit masses and force constants fa > fz ocewrs
{continucus curve). Vibmtional modes occur below a cutoff frequency wg = (8fg)}!/?
for p = 0, and below a frequency wy = (8fa)*? for p = 1. A singularity in N(w) is
present at frequencies w_(gBJ = (4fg)1/2 and ng) = (4fa)V/2, respectively. Both spectra
are normalized to unity.

For p = 1, all lattice sites are connected by springs with force constants f, , while
for p = 0 all lattice sites are connected by springs with force constants fp (= Af,,
h < 1). For p = 0, vibrational modes occur below the cutoff frequency (edge of the
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spectrum)

wn = (8fp)'"? @B
while for p = 1 vibrational modes occur below w, = (8f,)1/2. Below the threshold
frequencies, the density of states shows a singularity at w{> = (4f3)/2 for p = 0, and
at ng) = (4f,)'/2 for p = 1 [16]. For k < 1, the density of states of the ordered B

lattice, Ng(w), is located at frequencies well inside the Debye regime of the density
of states of the ordered A lattice where N,(w) = (2nf,) 'w. We expect that the

frequencies ug‘” and wp of (3.1), which are characteristic of the ordered B lattice,
will also show up in the random 4B neiwork. At low concentrations of A bonds
(p < 1), N(w) is well described by the shape of Ng(w), as long as w < wp. Because
of disorder, the singularity in Ng(w) is smoothed out and becomes a ‘hump’ in N (w)
around wg.B). For frequencies above wy, N(w) exhibits a number of peaks representing
localized lattice vibrations of small A clusters embedded in the B matrix [1].

The situation becomes more complex near and above p., where the infinite A
cluster occurs. From figure 2 and section 2, it is intuitively clear that at p_ we can
expect sound waves at very low frequencies, followed by a hump at wg.B), and fracton
like excitations above wy, for h < 1. The set-in of sound waves, however, is not
simply determined by wp, but by a second characteristic frequency w, < wp which
depends on the ratio z (see below). Above p,, the correlation length £ is finite and
consequently also w, (of 2.5) has to be taken into account.

To obtain N{w) for p at p, and above p_, we consider the related random walk
problem where f, and fp denote the transition rates along the A and B bonds. In the
following we discuss two limiting cases: (I) w, € w, € wg, and (I} v, K wy K w,.

3.1. Frequency regime I' w; < w, € wy

First we consider the random walk problem at p,. In contrast to the case £ =0, a
random walker (which in this case is often referred to as a ‘termite’) can perform
jumps along both types of bonds. If the termite moves along the A bonds, it explores
the fractal labyrinth of an A cluster, and attempts to leave the cluster, through B
bonds, with a probability ~ & < 1. The transition rate f, determines the mean jump
time ¢, ~f;' along an A bond, which we take as the unit of time.

Along the B bonds, the mean jump time fg is proportional to ™', and the
motion of the termite is slowed down considerably [17]. Accordingly, for very short
times £, < ! < ty (corresponding to length scales 1 < r < kY%, where the length
of a bond has been chosen as unity) diffusion is determined solely by the behaviour
of the termite on the fractal labyrinths of A clusters, and R(f) ~ t¥/% as for random
walks on standard percolation networks (section 2). Thus, from (2.2) we expect

Py(t) = Py(co) ~ 412 th €t L Ly (3.2)

For times ¢ > ¢, the termite can move also along B bonds and explores both A and

B clusters, which become thus coupled to each other. According to Hong et al [17)],
there exists a second characteristic time #, ~ f | #="%% *» t,, above which diffusion
becomes normal and R(t) ~ (D, 1)}/2, with the diffusion constant D, ~ f, k*#, where

¢ = (¢ +s)"1, and p and 5 are the conductivity and the superconductivity exponents,
respectively. For ¢ >» ¢;, we then expect

Pity~1742 s, (3.3)
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where now Py{co) = 0, since the termite can diffuse everywhere in the network.

In previous publications on the termite problem [17], it has been assumed that
4, is the only characteristic time scale of the problem and a scaling theory for R(7)
based upon this assumption has been performed. As we have seen, this ansatz is not
justified since for shorter times ¢ < f,, ¢y is the relevant time scale, and anomalous
diffusion occurs only for ¢ < tp, not for t < t, as assumed in [17].

In the equivalent vibrational problem, the anomalous behaviour of the random
walk for times 7, < ! < tp, corresponds to fracton-like vibrations of the A-bonds
in the network for frequencies wp € w € w,, as discussed qualitatively above.
Accordingly, the density of states N(w) should scale as

Nw)~w® ! wpww, (3.4)

where fractons occur,

The intermediate time regime fp < t < 1, in which the termite can explore both A
and B clusters, corresponds to vibrations associated with both A and B springs in the
network, for frequencies w, < w < wy, The characteristic frequency corresponding to

Ly
w, ~f;f2h"d-'¢’f2 (3.5)
determines the frequency scale below which Debye phonons should occur, and
N{w) ~ ! w L Wy, (3.6)

The exponent vd,,¢/2 in (3.5) is greater than 1/2 and hence w, < u§B) < wp. Ac-
cordingly, we expect that in this intermediate frequency regime, non-Debye phonons
can be excited which manifest themselves by the hump in N(w). Numerical cal-
culations of N(w) for two-dimensional bond-percolation networks at criticality sup-
port (3.4) and (3.6), as shown in figure 3.

The scaling behaviour of N{w) is different from that in the case & = 0 (see (2.4)),
because of the existence of two characteristic frequencies, w, of (3.5) and wy of (3.1).
Outside the hump region, ie. for w < w;, Or w > wp, the following scaling form holds

N{w) = o*~! G(w/uw,) (3.7)

where G(x) ~ const for w > wg, and G(x) ~ x¥~% for x < 1. The results of numerical
simulations are plotted in figure 4 (a). The data collapse supports our ansatz (3.7).

If we consider all frequencies, including those in the hump region, we obtain the
results shown in figure 4 (b). Clearly, there is data collapse (scaling) for w < w, and
w > wy. Notice, however, that the data also collapse above w, for frequencies below
the hump frequency, w < ugB). This data collapse can be identified with the one
obtained for the termite problem for times ty € ¢ < 1, at p = p, (see figure 10 of
Hong et al [17]).

For p > p,, the above results hold if #* > (p—p_). This condition means that the
time ¢, the termite needs to explore large length scales in the system, is much smaller
than the time ¢, that would take the termite to move over length scales of order ¢
on the infinite A cluster alone. The condition z; 3 ¢, corresponds to frequencies
we & wy, (see figure 5). In this limit, ¢ is irrelevant and ¢z and #, represent the
only characteristic times in the system. Equivalently, wg and w, represent the only
characteristic frequencies.
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Figare 3. Density of vibrational states for bond-percolation networks at the critical
concentration pe = 1/2, for several ratios of spring constants: (2) & = 1673, and (%)
0.05. The positions of wy, wgB} + WR,y ng) and wy are indicated by arrows. The straight
lines display the slopes predicted by the theory (equations (3.4) and (3.6)).

3.2, Frequency regime II: w, € wp € w;

This regime corresponds to the case 7, < fg. Within the ‘short’ time regime 1 < tg,
the walker can explore length scales of the order of the correlation length £, thus
escaping from the fractal labyrinth of the infinite A cluster before exiting the infinite
cluster through B bonds. In this limit, the random walker behaves essentially as the
ant in the labyrinth of section 2 [17], and Py(¢) is expected to obey (2.3). Nothing
special can occur for times ¢ > fp since the walker has already explored large length
scales when it can transit through B bonds.

In the corresponding vibrational problem, the standard crossover from fractons
to Debye phonons occurs at the characteristic frequency w, > wp. Now, vibrations
associated with the B sublattice occur at frequencies well inside the Debye-phonon
regime of the A metwork. In contrast to the smooth behaviour of Py(t) near tg, the

existence of the second frequency wp in N(w) is manifested by the hump at wgg),
which appears as a low-frequency peak (see also [18]). Thus, the density of states
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Figure 4. Test of the scaling behaviour of the density of states (3.7), for bond-percolation
networks in two dimensions at the percolation threshold p., for several values of h. (a)
Debye regime, excluding the region of the hump, for: 10-¢ < & < 0.1, on 400 x 400
lattices and averages over 10 system realizations each. (b) All frequencies, including the
hump region, for: 10—* £ & £ 0.1, where the arrows indicate the values of wp/wy, on
100 x 100 lattices and averapes over 50 system realizations each.
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Figure 5. (@) Schematic represeniation of difierent time regimes for random walks on
random AB networks, with two types of bonds representing mean jump times z, and
Ip > t5, near the critical concentration of A with 15 < & < #;. (b) The corresponding

frequency regimes of the related vibrational problem, where generically, we ~ 1, yz,
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should behave as in (2.4) for frequencies w > wp, ie.
N(w) 2 w1 glwjwe) WP wy (3.8)

and fractons occur at w > w,, With a ‘smooth’ crossover to Debye phonons for
w < w,. We show in figure 6 illustrative examples of the density of states obtained
for wy < we. Values of N(w) fof w » wg are indistinguishable from those obtained
for the same p when 4 = 0, thus supporting our ansatz (3.8).
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Figure 6. Same as in figure 3, for p > p. and wg » wp, Witk & = 10~%: (a) p=057

and (b) p=0.60. The positions of wg, w;, w_E;A] and wa are indicated by arrows. The
straight lines display the slopes predicted by the theory (equations (2.4) and (3.8))

Because of normalization, the amplitude of the B hump around uga) Erows as fz
decreases. When fp = 0, the B sublattice contributes to N(w) a delta-like function at
w = 0, and (3.8) holds for all frequencies w > 0, as discussed in section 2.

4. Summary and concluding remarks

We have studied scalar vibrational properties of random two-component networks,
where two types of harmonic springs, f, and fz = #f, (B < 1) are present with
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probability 7 and 1-p, respectively. We have developed a scaling theory for the density
of states N(w) near the critical concentration p_, and have tested it by numerical
simulations on the square lattice,

A salient feature of the present model is the manifestation of a ‘hump’ in N{w),
representing non-Debye phonons near the maximum vibrational frequency of the B

sublattice, wy, ~ fa!2. For p > p, and h sufficiently small, the standard fracton—phonon
crossover is recovered at a characteristic frequency w, >» wyp, which is determined by
the correlation length £. For finite £ and p sufficiently close to p., a new type
of fracton—phonon crossover is obtained which is determined by two characteristic
frequencies: w;, (which depends on k) and wp, with w, <« wg. The hump mediates
the crossover from fracton-like modes (occurring for w 3 wg), to Debye phonons
(occurring for w < w;,) when w;, > w,.

Similar qualitative behaviour of the density of states can be expected for simple
cubic lattices where a hump in N(w), originating from the maximum in the density
of states of the ordered B lattice, js also present near the critical concentration
P, = 02492 (see, e.g. [ID.
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